

Милов Сергей Николаевич

МОДЕЛИРОВАНИЕ ФАЗОВЫХ ДИАГРАММ НЕКОТОРЫХ КОНДЕНСИРОВАННЫХ ТРЁХ- И ЧЕТЫРЁХКОМПОНЕНТНЫХ СИСТЕМ

02.00.04 – Физическая химия

Автореферат

диссертации на соискание ученой степени кандидата химических наук

Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего образования «Самарский государственный технический университет» на кафедре общей и неорганической химии

Научный руководитель: доктор химических наук, профессор

Гаркушин Иван Кириллович

Официальные оппоненты: Трифонов Константин Иванович

доктор химических наук, профессор, ФГБОУ ВО «Ковровская государственная технологическая академия имени В.А. Дегтярева», заведующий кафедрой безопасности жизнедеятельности, экологии и химии

Ильин Константин Кузьмич

доктор химических наук, профессор, ФГБОУ ВО Институт химии. «Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского», профессор кафедры

общей и неорганической химии

Ведущая организация: ФГБОУ ВО «Пермский государственный нацио-

нальный исследовательский университет»

Защита состоится « <u>17 » декабря 2020</u> г. в <u>14 часов 00 мин</u> на заседании совета по защите докторских и кандидатских диссертаций Д 212.263.02 при ФГБОУ ВО «Тверской государственный университет» по адресу: 170002, г. Тверь, Садовый переулок, 35, ауд. 226.

С диссертацией можно ознакомиться в библиотеке при ФГБОУ ВО «Тверской государственный университет» по адресу: 170100, г. Тверь, ул. Трехсвятская, 16/31, и на сайте ТвГУ http://dissertations.tversu.ru/

Автореферат	разослан «	>>	2020 г.
	P *** * * * * * * * * * * * * * * * * *	.,	

Ученый секретарь диссертационного совета Д 212.263.02 кандидат химических наук, доцент

М.А. Феофанова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Молибдаты и вольфраматы щелочноземельных металлов имеют широкую область оптической прозрачности, что позволяет получать излучение в ближнем и среднем ИК — диапазоне спектра, необходимое для применения, например, в лазерных приборах. Кристаллы молибдата стронция наиболее технологичные и имеют близкие к рекордным значения характеристики эффекта вынужденного комбинационного рассеивания (ВКР). Интерес представляют как ВКР — активные среды монокристаллы твердых растворов $MMo_xW_{1-x}O_4$ (М — Ca, Sr, Ba) для применения в приборах для лазерного зондирования, локации, дальномерах и т.д.

Молибдаты и вольфраматы щелочноземельных металлов растворяются в традиционных растворителях — расплавах галогенидов щелочных и щелочноземельных металлов. Для выявления перспективных в прикладном отношении сплавов необходимы данные о фазовых равновесиях с участием указанных компонентов. Первым этапом при изучении соотношений фаз в многокомпонентных конденсированных системах является моделирование фазовых систем и химического взаимодействия в них.

Работа выполнена в рамках базовой части государственного задания Самарского государственного технического университет № 4.5534.2017/8.9; НИР № 503/17).

Степень разработанности темы. Изучен ряд систем, включающих молибдаты и вольфраматы щелочных и щелочноземельных металлов: M^+, M^{2+} ||Hal $^-, O_4^{2-}$ ($O-M_0, W$); M^+, M^{2+} ||Hal $^-, MoO_4^{2-}, WO_4^{2-}$ ($M^+-Li^+, Na^+, K^+; M^{2+}-Ca^{2+}, Sr^{2+}, Ba^{2+}$; Hal $^--F^-, Cl^-, Br^-, I^-$). В Бурятском филиале СО РАН разработан метод компьютерного дизайна фазовых диаграмм, используемый преимущественно для систем из металлов. В Самарском государственном техническом университете используется метод компьютерного 3D моделирования солевых систем с расслоением в жидкой фазе (взаимные и невзаимные системы). Однако не проведено моделирование фазовых равновесий в системах с одновременным участием молибдатов и вольфраматов некоторых щелочных и щелочноземельных металлов и волно-солевых систем.

Цель работы — моделирование и экспериментальное исследование фазовых диаграмм некоторых тройных, четверных взаимных и невзаимных систем с участием молибдатов и вольфраматов щелочных, щелочноземельных металлов и водно-солевых систем.

Задачами исследований являлись следующие:

- моделирование фазовых диаграмм систем с участием галогенидов, молибдатов и вольфраматов, щелочных и щелочноземельных металлов;
- компьютерное 3D моделирование систем LiCl Li₂MoO₄ Li₂WO₄ , NaCl Na₂MoO₄ Na₂WO₄ и Na⁺, Sr²⁺||Cl⁻, MoO₄²⁻,WO₄²⁻ по элементам огранения и внутренним сечениям;
- разбиение на симплексы и описание химического взаимодействия в четырёхкомпонентной взаимной системе Na^+ , $Sr^{2+}||Cl^-$, MoO_4^{2-} , WO_4^{2-} конверсионным методом и методом ионного баланса;
- прогнозирование фазовых комплексов систем Na^+ , $M^{2+}||Cl^-$, MoO_4^{2-} , WO_4^{2-} (M^{2+} Ca^{2+} , Sr^{2+} , Ba^{2+} ; $Hal^ Br^-$, J^-);

- моделирование фазовых диаграмм систем $CO(NH_2)_2 NH_4NO_3 H_2O$ и $NaCl CaCl_2 H_2O$;
- экспериментальное исследование химического взаимодействия и фазовых равновесий в тройных взаимных Na^+ , $Sr^{2+}||Cl^-$, $3O_4^{2-}$ (9-Mo,W) и четырехкомпонентной взаимной Na^+ , $Sr^{2+}||Cl^-$, MoO_4^{2-} , WO_4^{2-} системах;
- экспериментальное выявление низкоплавких составов в системах $CO(NH_2)_2 NH_4NO_3 H_2O$, $NaCl CaCl_2 H_2O$ и CH_3COONa $NaNO_2$ H_2O .

Научная новизна. Установлены закономерности формирования моделей ликвидусов в тройных системах с одновременным участием молибдатов и вольфраматов; LiHal- Li₂MoO₄-Li₂WO₄ (Hal – Cl, J), KJ – K_2 MoO₄ – K_2 WO₄, Ca(Hal)₂ – CaMoO₄ – CaWO₄ (Hal – Br, J), Sr(Hal)₂ – SrMoO₄ – SrWO₄ (Hal – F,Br, J), Ba(Hal)₂ – BaMoO₄ – BaWoO₄ (Hal – Br, J).

Выявлены закономерности формирования фазовых диаграмм четырёх-компонентных и четырёхкомпонентных взаимных систем LiF-LiHal-Li₂MoO₄-Li₂WO₄ (Hal – Cl, J), NaF – NaHal – Na₂MoO₄-Na₂WO₄ (Hal – Br, J), KF – KHal – K₂MoO₄-K₂WO₄ (Hal – Cl,J), Li⁺,K⁺||Cl⁻(J⁻),MoO₄²⁻, WO₄²⁻; Li⁺, Ca²⁺||Cl⁻ (J⁻), MoO₄²⁻, WO₄²⁻; Na⁺,Ca²⁺|| (J⁻), MoO₄²⁻, WO₄²⁻; K, Ca||Cl⁻ (Br⁻,J⁻)MoO₄²⁻, WO₄²⁻. NaCl –CaCl₂ – H₂O, CO(NH₂)₂ – NH₄NO₃-H₂O. Число систем огранения с эвтектиками должно быть равно двум. Осуществлён прогноз кристаллизующихся фаз.

В графической системе $KOM\Pi AC-3D$ сконструированы модели систем $LiCl-Li_2MoO_4-Li_2WO_4$, $NaCl-Na_2MoO_4-Na_2WO_4$, Na^+ , $Sr^{2+}||MoO_4^{2-},WO_4^{2-}$.

Проведено разбиение на симплексы четырёхкомпонентной взаимной системы Na^+ , $Sr^{2+}||Cl^-,MoO_4^{2-}$, WO_4^{2-} , химическое взаимодействие в этой системе описано конверсионным методом и методом ионного баланса.

Экспериментально исследованы солевые тройная взаимная система $Na^+,Sr^{2+}||Cl^-WO_4^{2-},$ четырехкомпонентная взаимная система $Na^+,Sr^{2+}||Cl^-,MoO_4^{2-},$ $WO_4^{2-};$ выявлены низкоплавкие нонвариантные составы в водно-солевых системах $CO(NH_2)_2-NH_4NO_3-H_2O,$ $NaCl-CaCl_2-H_2O$ и $CH_3COONa-NaNO_2-H_2O.$

Теоретическая и практическая значимость. В диссертационной работе впервые описано и исследовано химическое взаимодействие, а также фазовые равновесия в системах Na^+ , $Sr^{2+}||Cl^-WO_4^{2-}$; Na^+ , $Sr^{2+}||Cl^-$, MoO_4^{2-} , WO_4^{2-} , которые подтверждены методом дифференциального термического анализа (ДТА) и рентгенофазового анализа (РФА).

Установлены температуры плавления и составы эвтектик в системах Na^+ , $Sr^{2+}||Cl^-$, WO_4^{2-} ; $CO(NH_2)_2$ – NH_4NO_3 – H_2O , NaCl– $CaCl_2$ – H_2O и CH_3COONa - $NaNO_2$ - H_2O .

Предложена методика прогнозирования фазовых комплексов в рядах тройных и четырехкомпонентных взаимных систем с одновременным участием молибдатов и вольфраматов лития, натрия, калия и кальция, стронция, бария. Информация по полученным геометрическим моделям может служить основой для планирования эксперимента. В графической системе КОМПАС- 3D можно применять для моделирования систем как по элементам огранения, так и по данным о внутренних разрезах с одновременным участием молибдатов и вольфраматов, образующих изоморфные смеси. Выявленные низкоплавкие составы в системе Na^+ , $Sr^{2+}||MoO_4^{2-}$, WO_4^{2-} ; Na^+ , $Sr^{2+}||Cl^-$, MoO_4^{2-} , WO_4^{2-} могут быть основой

для электрохимического получения молибдена, вольфрама и молибден-вольфрамовых сплавов из расплавов, а также для выращивания монокристаллов $SrMo_xW_{1-x}O_4$ из расплавов. Эвтектика системы $NaCl-CaCl_2-H_2O$ при соответствующих добавках может быть использовано как жидкий антигололедный реагент или низкотемпературный теплоноситель. Эвтектика системы $CO(NH_2)_2-NH_4NO_3-H_2O$ может быть использована как жидкое азотное удобрение и как антигололёдный реагент. Также как антигололёдный реагент может быть использована эвтектика системы $CH_3COONa-NaNO_2-H_2O$. Данные по фазовым равновесиям могут быть использованы для пополнения баз данных.

Методология и методы исследования. В диссертационной работе использованы общепринятые методы физико-химического анализа многокомпонентных систем. В качестве источников информации использованы периодические издания, научная, патентная информация и монографии. В качестве специальных методов научного исследования применены компьютерное 3D моделирование, дифференциальный термический и рентгенофазовый анализы.

На защиту выносятся следующие основные положения:

- геометрическое моделирование трех- и четырехкомпонентных взаимных и невзаимных систем с участием молибдатов, вольфраматов и галогенидов некоторых щелочных и щелочноземельных металлов;
- компьютерное 3D моделирование трех- и четырехкомпонентных взаимных и невзаимных систем с участием хлоридов, молибдатов и вольфраматов лития, натрия, стронция;
- результаты экспериментального исследования и низкоплавкие составы четырёхкомпонентной взаимной солевой системы Na^+ , $Sr^{2+}||Cl^-$, MoO_4^{2-} , WO_4^{2-} и водно-солевых систем $CO(NH_2)_2$ - NH_4NO_3 - H_2O , NaCl- $CaCl_2$ - H_2O и CH_3COONa $NaNO_2$ H_2O .

Степень достоверности полученных данных. Исследования методом ДТА проведены на сертифицированном и поверенном оборудовании ЦКП СамГТУ с получением воспроизводимых данных нескольких измерений. Некоторые исследования получены с использованием оборудования фирмы NETZSCH.

Личный вклад автора заключается в выборе цели исследования, определения задач, планировании эксперимента и проведении исследований в Самарском государственном техническом университете.

Обсуждение результатов и подготовка их публикации проводились с участием соавторов со значительным вкладом соискателя. Общая постановка цели и задач по диссертационной работе проведены совместно с научным руководителем.

Автором получены следующие наиболее значимые результаты:

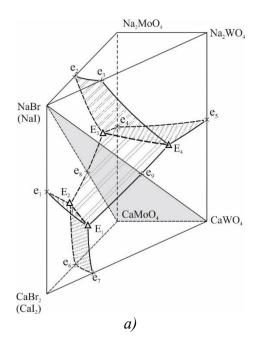
- предложено моделирование систем с участием молибдатов и вольфраматов некоторых s^1 и s^2 элементов геометрическим методом и с помощью графической системы КОМПАС 3D;
- определен фазовый комплекс системы Na^+ , $Sr^{2+}||Cl^-$, MoO_4^{2-} , WO_4^{2-} и проверен прогноз состава кристаллизующихся фаз, который подтвержден экспериментальными исследованиями методами ДТА и $P\Phi A$.

- описано химическое взаимодействие в тройных взаимных Na^+ , $Sr^{2+}||Cl^-$, ΘO_4^{2-} (ΘO_4^{2-} Мо, ΘO_4^{2-} Системах конверсионным методом и методом ионного баланса; экспериментально исследовано взаимодействие порошков нестабильных веществ взаимных систем при программированном нагреве.

Также описано взаимодействие и построены 3D модели фазовых комплексов систем $NaCl-Li_2MoO_4-Li_2WO_4$, $NaCl-Na_2MoO_4$, Na^+ , $Sr^{2+}||MoO_4^{2-}$, WO_4^{2-} , на основе которых сконструированы политермические и изотермические разрезы.

Апробация работы. Материалы работы докладывались на следующих конференциях: «Актуальные проблемы современной химии», г. Куйбышев, 1988 г., 1989 г; VIII Всесоюзн. совещании по физ.-хим. анализу, г. Саратов, 1991 г., «Окружающая среда для нас и будущих поколений», международ. конф., г. Самара, 2002 г. 2004 г., «Безопасность и логистика транспортных систем», Междунар. научно-практическая конф., г. Самара, 2004 г., XII Междунар. научно-практическая конф., г. Сочи, 2020.

Публикации. По теме диссертации опубликованы 7 статей (в журналах перечня ВАК), 9 тезисов и материалов докладов, одна монография.


Объем и структура работы. Диссертационная работа включает введение, четыре главы — теоретическую часть, экспериментальная часть, обзор литературы, обсуждение результатов, заключение и список литературы из наименования. Работа изложена на 153 страницах, включая 28 таблиц и 65 рисунков. Список цитируемой литературы включает 220 источников.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении показана актуальность выбранной темы, сформированы цели и задачи диссертационной работы. Описаны научная новизна, практическая и теоретическая значимость работы, личный вклад автора.

В первой главе приведён обзор литературы по применению, методам синтеза молибдатов, вольфраматов щелочных и щелочноземельных элементов и их изоморфных смесей. Кратко описаны молибдатные, вольфраматные и молибдат-вольфраматные системы лития, натрия, калия, кальция стронция и бария. Описаны исследованные трехкомпонентные и четырехкомпонентные невзаимные и взаимные системы. Приведено описание теоретических методов исследования и моделирования систем.

Во второй главе приведены условия образования непрерывных рядов твердых растворов (HPTP) в n-компонентных системах в зависимости от числа систем огранения с HPTP и наличием нонвариантных точек. Проведено геометрическое моделирование трех- и четырехкомпонентных систем с одновременным участием модибдатов и вольфраматов M^+ и M^{2+} (M^+ – Li^+ , Na^+ , K^+ ; M^{2+} – Ca^{2+} , Sr^{2+} , Ba^{2+}). В качестве примера на рис. 1 показаны эскизы моделей фазовых комплексов неизученных систем Na^+ , $Ca^{2+} ||Hal^-$, MoO_4^{2-} , WO_4^{2-} (Hal^- – Br^- , I^-) и K^+ , $Ca^{2+} ||Cl^-$ (Br^- , I^-), MoO_4^{2-} , WO_4^{2-} .

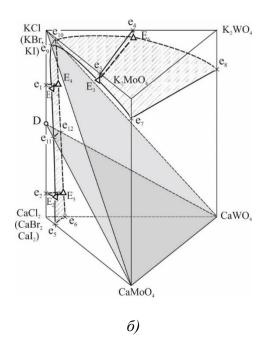


Рисунок 1 — Эскиз моделей фазового комплекса систем а) Na⁺, Ca²⁺ \parallel Br⁻(I⁻), MoO₄²⁻, WO₄²⁻; б) K⁺, Ca²⁺ \parallel Cl⁻ (Br⁻, I⁻), MoO₄²⁻, WO₄²⁻.

Также рассмотрены варианты компьютерного 3D моделирования систем по элементам огранения и данным внутренних разрезов в системе трехмерного проектирования КОМПАС 3D. Рассмотрим последовательность моделирования на примере трехкомпонентной системы $LiCl-Li_2MoO_4-Li_2WO_4$. Построение модели фазового комплекса состоит из следующих этапов:

- 1. Поиск справочных данных и, при необходимости, экспериментальное исследование элементов огранения системы и фазовых равновесий в самой системе.
- 2. Определение базовых геометрических элементов модели на основании фазовых областей, характеризующих фазовый комплекс системы (табл. 1):

Таблица 1 - Базовые геометрические элементы модели системы LiCl-Li₂MoO₄-Li₂WO₄

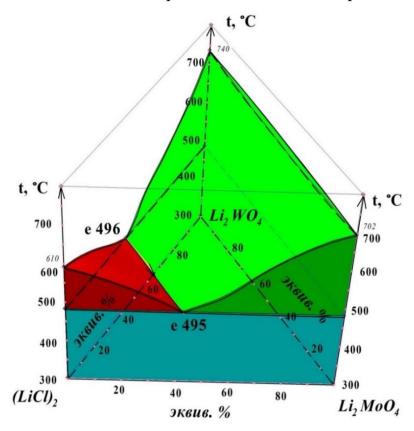
Фазовая область	Число фаз	Степень свободы	Тип равновесия	Геометрический элемент
Ж+LiCl	2	2	бивариантный	одна поверхность (LiCl-e 496-е 495-LiCl)
Ж+Li ₂ W _x Mo _{1-x} O ₄	2	2	бивариантный	одна поверхность (е 496-е 495-Li ₂ MoO ₄ -Li ₂ WO ₄ -е 496)
Li ₂ W _x Mo _{1-x} O ₄ +LiCl	2	2	бивариантный	поверхности вырождены
Li ₂ W _x Mo _{1-x} O ₄ +LiCl+米	3	1	моновариант- ный	одна линия е 496-е 495

3. Перерасчет координат нонвариантных точек из координат состава и температуры в координаты декартовой системы. Для перерасчета координат использовалось следующее матричное уравнение (1):

Здесь x_i , y_i , z_i — координаты фигуративной точки I — координаты декартовой системы координат;

 a_i (a_i =100- b_i - c_i), b_i , c_i — содержание компонентов LiCl, Li₂MoO₄ и Li₂WO₄ (в эквивалентных процентах) сплава точки — барицентрические координаты состава точки;

 T_i – температура состава сплава, отвечающего фигуративной точке I, K;


 T_{H} —задаваемая температура (кратная 100), ниже по значению минимальной температуры изучаемого фазового превращения в системе;

k — нормирующий температурный коэффициент моделирования, необходим для создания модели диаграммы с высотой по температуре, равной h ед. Обычно h=100 ед, уравнение (2):

$$k=rac{h}{T_{e}-T_{
m H}};$$
 (2).
$$\begin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ -rac{100}{100} & -rac{100}{100} & -rac{T_{
m B}-T_{
m H}}{1} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ -rac{100}{100} & -rac{T_{
m B}-T_{
m H}}{1} & 1 \end{pmatrix} -$$
 матрица параллель-

ного переноса начала координат в центре фигуры треугольной призмы.

- 4. Построение ограняющих элементов (точек и линий) в объеме модели.
- 5. Построение базовых и дополнительных геометрических элементов модели;
- 6. Анализ геометрической модели: построение политермических и изотермиче-

ских сечений, изотерм поверхности ликвидуса, расчет материального баланса равновесных фаз системы. Трехмерная модель (рис. 2), выполненная в графической системе КОМ-ПАС-3D, дает возможность построить изотермические сечения системы для любого значения температуры в выбранном диапазоне (300-800°C).

Анализ сечений на рис. 3 показывает, что при

Рисунок 2 - 3D-модель фазового комплекса системы LiCl-Li₂MoO₄-Li₂WO₄

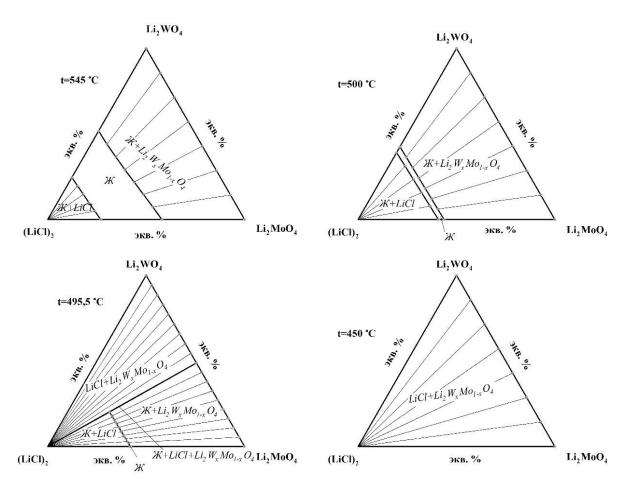


Рисунок 3 - Изотермические сечения системы LiCl-Li₂MoO₄-Li₂WO₄ при 545, 500, 495,5 и 450°C

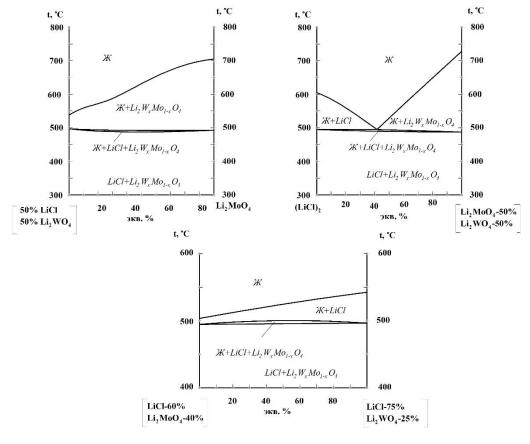


Рисунок 4 - Политермические сечения системы LiCl-Li₂MoO₄-Li₂WO₄

понижении температуры в системе уменьшается жидкофазная область и увеличиваются области сосуществования жидкой и твердой фазы. При температуре ниже 495°С исчезает жидкая фаза. Если изотермические сечения получают в результате выявления линий пересечения горизонтальной плоскости со строго заданной координатой z с поверхностями модели, то политермические сечения строят на основе пересечения вертикальной плоскости с поверхностями модели (рис. 4). Изотермические и политермические разрезы характеризуют границы фазовых областей.

Аналогичным образом проведено 3D моделирование системы $NaCl-Na_2MoO_4-Na_2WO_4$. На рис. 5 изображена 3D модель фазового комплекса системы, на рис. 6 представлены изотермы поверхности ликвидуса. Примеры политермического и изотермического разрезов получены из 3D модели (рис. 7 и 8).

На рис. 9 показана 3D модель тройной взаимной системы $Na^+,Sr^{2+}||WO_4^{2-},MoO_4^{2-}|$. Изотермические сечения системы при температурах 1350, 920 и 686°C и изотермы поверхности ликвидуса с шагом 100°C изображены на рис. 10.

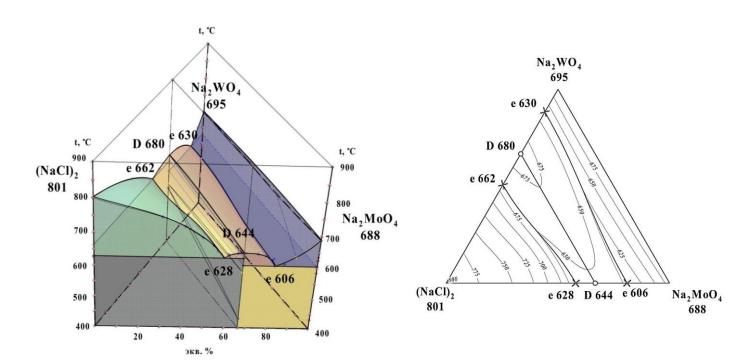


Рисунок 5 — 3D модель трехкомпонентной системы $Na^{+}||Cl^{-},WO_{4}^{2^{-}},MoO_{4}^{2^{-}}$

Рисунок 6 — Изотермы поверхности ликвидуса системы $Na^+ ||Cl^-, WO_4^{2^-}, MoO_4^{2^-} c$ шагом в $25^{\circ}C$.

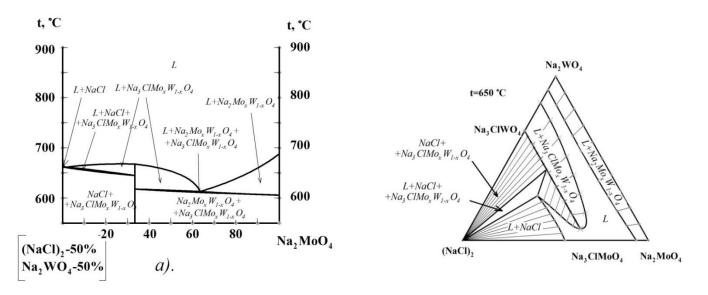
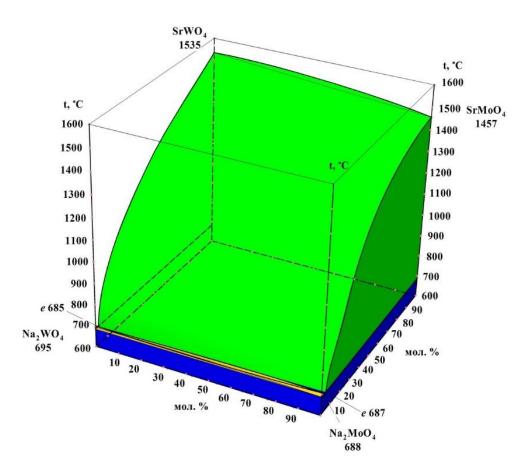



Рисунок 7 — Политермическое сечение системы $Na^{+}\|Cl^{-},WO_{4}{}^{2-},MoO_{4}{}^{2-}$

Рисунок 8 -Изотермическое сечение системы $Na^{+}||Cl^{-},WO_4{}^{2^{-}},MoO_4{}^{2^{-}}$ при 650 °C

Четырехкомпонентная взаимная система $Na^+,Sr^{2+}//Cl^-,MoO_4^{2-}, WO_4^{2-}.$ Ограняющие элементы показаны на призме составов четырехкомпонентной взаимной системы $Na^+,Sr^{2+}||Cl^-,MoO_4^{2-},WO_4^{2-}$ (рис. 11). В тройной взаимной системе $Na,Sr||MoO_4,WO_4$ образуются твердые растворы $SrMo_xW_{1-x}O_4$,

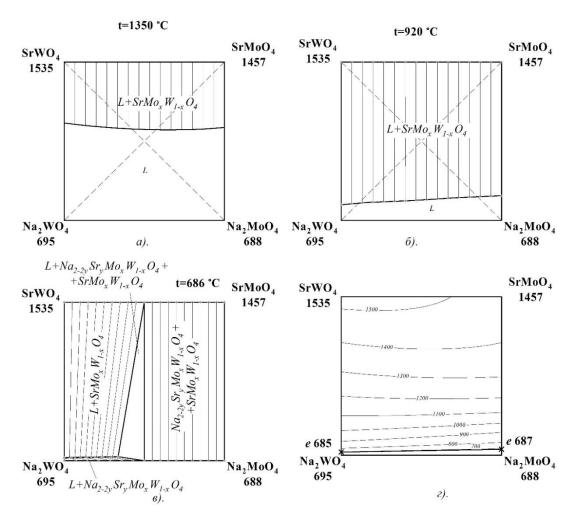
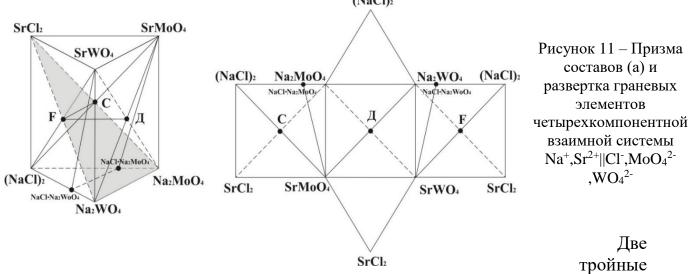



Рисунок 10 — Изотермические сечения системы $Na^+,Sr^{2+}\|WO_4^{2-},MoO_4^{2-}$ при: а). 1350 °C; б). 920 °C; в). 686 °C; г). изотермы поверхности ликвидуса. Диаграммы получены на основании 3D модели

 $Na_2Mo_xW_{1-x}O_4$. Также образуются устойчивые бинарные твердые растворы $SrMo_xW_{1-x}O_4$, $Na_2Mo_xW_{1-x}O_4$ и $Na_3ClMo_xW_{1-x}O_4$.в системах $SrCl_2$ — $SrMoO_4$ — $SrWO_4$ и $NaCl-Na_2MoO_4$ — Na_2WO_4 .

взаимные системы Na^+ , $Sr^{2+}||Cl^-$, MoO_4^{2-} , Na^+ , $Sr^{2+}||Cl^-$, WO_4^{2-} , имеют одинаковую морфологию ликвидуса. В четырехкомпонентной системе предполагается отсутствие четверных точек нонвариантных равновесий

 $(табл.\ 2)$ и наличие устойчивых бинарных твердых растворов между $SrMoO_4$ и $SrWO_4$, Na_2MoO_4 и Na_2WO_4 , Na_3ClMoO_4 , Na_3ClWO_4 , которые образуются в соответствующих двойных системах $SrMoO_4$ – $SrWO_4$, Na_2MoO_4 – Na_2WO_4 и секущей Na_3ClMoO_4 – Na_3ClWO_4 .в системе NaCl– Na_2MoO_4 – Na_2WO_4 .

Разбиение призмы составов на симплексы можно провести как геометрическим методом (рис. 11), так и с помощью теории графов, составив матрицу смежности (табл. 2) на основе элементов огранения.

Вещество, индекс	X_1	X_2	X_3	X_4	X_5	X_6	X ₇	X_8
SrCl ₂ ,X ₁	1	1	0	0	0	0	1	1
NaCl, X ₂		1	0	0	1	1	1	1
Na ₂ MoO ₄ , X ₃			1	1	1	1	1	1
Na_2WO_4, X_4				1	1	1	1	1
D ₁ , Na ₃ ClMoO ₄ , X ₅					1	1	1	1
D ₂ , Na ₃ ClWO ₄ , X ₆						1	1	1
SrMoO ₄ , X ₇							1	1
SrWO ₄ , X ₈								1

Таблица 2 – Матрица смежности системы $Na^+, Sr^{2+} ||Cl^-, MoO_4^{2-}, WO_4^{2-}||$

Согласно теории графов необходимо решить логическое выражение (ЛВ), составленное на основе матрицы смежности. ЛВ имеет вид (3):

$$\Pi B = (X_1 + X_3)(X_1 + X_4)(X_1 + X_5)(X_1 + X_6)(X_2 + X_3)(X_2 + X_4)$$
(3)

Преобразуем это выражение с учетом закона поглощения (4):

$$\Pi B = (X_1 + X_3 X_4 X_5 X_6)(X_2 + X_3 X_4) = X_1 X_2 + X_1 X_3 X_4 + X_3 X_4 X_5 X_6$$
(4)

Выписывая недостающие вершины в решении логического выражения, получаем набор стабильных элементов — симплексов системы $Na^+,Sr^{2+}||Cl^-,MoO_4^{2-},WO_4^{2-}$:

C1: $X_3X_4X_5X_6$ $X_7X_8 => Na_2MoO_4-Na_2WO_4-Na_3ClMoO_4-Na_3ClWO_4-$ SrMoO₄-SrWO₄,

C2: $X_2X_5X_6X_7X_8 => NaCl-Na_3ClMoO_4-Na_3ClWO_4-SrMoO_4-SrWO_4$,

C3: $X_1X_2X_7X_8$: => SrCl₂- NaCl- SrMoO₄-SrWO₄.

Смежные симплексы соединяются между собой секущими элементами, имеющими общие вершины: C1 и C2, соединяются стабильным прямоугольным сечением (рис. 12) $Na_3ClMoO_4-Na_3ClWO_4-SrMoO_4-SrWO_4$; C2 и C3 соединяются стабильным треугольником $NaCl-SrMoO_4-SrWO_4$.

Древо фаз системы линейное (рис. 12). Оно включает стабильные элементы – тетраэдр, пентатоп и гексатоп, секущие элементы – треугольник и четырехвершинник (прямоугольник), Древо фаз позволяет осуществить прогноз кристаллизующихся фаз в системе.

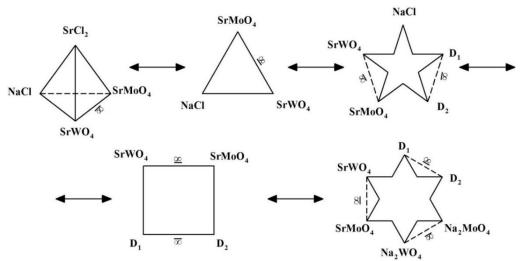


Рисунок 12 — Древо фаз четырехкомпонентной взаимной системы $Na^+,Sr^{2+}\|Cl^-,MoO_4^{2-},WO_4^{2-}$ D_1 и D_2 — соединения Na_3ClMoO_4 и Na_3ClWO_4 соответственно

Прогноз кристаллизующихся фаз в секущих и стабильных элементах проведем на основе моделирования фазового комплекса системы:

- стабильный гексатоп Na₂MoO₄-Na₂WO₄-Na₃ClMoO₄-Na₃ClWO₄- SrMoO₄- SrWO₄ фазы Na_{2-2v}Sr_vMo_xW_{1-x}O₄+ Na₃Cl Mo_xW_{1-x}O₄+ SrMo_xW_{1-x}O₄:
- стабильный пентатоп NaCl- Na₃ClMoO₄- Na₃ClWO₄- SrMoO₄-SrWO₄ фазы NaCl+ Na₃Cl Mo_xW_{1-x}O₄+ SrMo_xW_{1-x}O₄;
- ullet стабильный тетраэдр SrCl2— NaCl— SrMoO4—SrWO4 фазы NaCl+SrCl2+ +SrMo_xW_{1-x}O4.

Описание химического взаимодействия конверсионным методом В таблице 3 приведены тепловые эффекты и энергии Гиббса реакций обмена для стандартных условий.

Таблица 3 — Тепловые эффекты и энергии Гиббса реакций обмена в тройных взаимных системах четверной взаимной системы $Na^+,Sr^{2+}||Cl^-,MoO_4^{2-},WO_4^{2-}$

Система	Гиббса хи	рект и энергия мической бмена, кДж	Точка конверсии	Стабильная диагональ	
	$-\Delta_r H^0_{298}$	$-\Delta_{\rm r} {\rm G}^0$ 298			
Na ⁺ ,Sr ²⁺ Cl ⁻ ,MoO ₄ ²⁻	89,716	90,468	С	NaCl-SrMoO ₄	
$Na^{+},Sr^{2+} Cl^{-},WO_{4}^{2-} $	84,604	90,482	F	NaCl-SrWO ₄	
$Na^{+},Sr^{2+} MoO_4^{2-},WO_4^{2-} $	5,112	0,014	Д	Na ₂ WO ₄ –SrMoO ₄	

Для точек конверсии уравнения реакций обмена запишутся следующим образом:

точка C:
$$SrCl_2 + Na_2MoO_4 \rightleftarrows 2NaCl + SrMoO_4$$
; (5)

точка F:
$$SrCl_2 + Na_2WO_4 \rightleftarrows 2NaCl + SrWO_4$$
; (6)

Для центральной точки линии конверсии суммируем уравнения реакций 5 и 6 ($\Delta_r H^o_{298} = -174,32 \text{ кДж}; \Delta_r G^o_{298} = -180,95 \text{ кДж})$ (7):

$$2SrCl_2 + Na_2MoO_4 + Na_2WO_4 \rightleftarrows 4NaCl + SrWO_4 + SrMoO_4.$$
 (7) Выражая содержание С через X, а смеси F через (1–X), получаем уравнение реакции обмена для произвольной точки линии конверсии CF (8):

 $2SrCl_2 + X Na_2MoO_4 + (1-X) Na_2WO_4 \rightleftarrows 4NaCl + X SrWO_4 + (1-X) SrMoO_4$ (8) где X – эквивалентная доля компонентов, входящих в C.

Из данных по двойным системам известно, что $SrWO_4$ и $SrMoO_4$ образуют в любых соотношениях непрерывные ряды твердых растворов. Следовательно, при всех значениях X в пределах от 0 до 1 стабильными продуктами реакции при кристаллизации будут NaCl и $SrMo_xW_{1-x}O_4$. Как отмечено выше, точкам конверсии C и F отвечают реакции образования двойных соединений (9, 10). Поэтому все точки линии конверсии CF характеризуются следующим суммарным уравнением (11):

точка C:
$$SrCl_2 + 3Na_2MoO_4 \rightleftarrows 2 Na_3ClMoO_4 + SrMoO_4;$$
 (9)

точка F:
$$SrCl_2 + 3Na_2WO_4 \rightleftarrows 2Na_3ClWO_4 + SrWO_4$$
; (10)

$$2SrCl_2 + 3Na_2MoO_4 + 3Na_2WO_4 \rightleftarrows 2Na_3ClMoO_4 + 2Na_3ClWO_4 + SrMoO_4 + +SrWO_4$$
 (11)

Выражая содержание смеси С через у, а смеси F через (1–y), получаем реакции образования двойных соединений для любой точки конверсии CF (12):

$$SrCl_2 + 3yNa_2MoO_4 + 3(1-y)Na_2WO_4 \rightleftharpoons 2yNa_3ClMoO_4 + 2(1-y)Na_3ClWO_4 + ySrMoO_4 + (1-y)SrWO_4.$$
 (12)

Из данных по ограняющим элементам известно, что соединения Na_3ClMoO_4 и Na_3ClWO_4 образуют непрерывные ряды твердых растворов. Следовательно, при полной кристаллизации сплава, продуктами реакции (12) будут фазы $SrMo_xW_{1-x}O_4$ и $Na_3ClMo_xW_{1-x}O_4$. Таким образом, прогноз фаз по уравнениям (11) и (12) показывает, что конечными продуктами взаимодействия на линии конверсии CF являются фазы NaCl, $SrMo_xW_{1-x}O_4$ и $Na_3ClMo_xW_{1-x}O_4$.

Метод ионного баланса

На примере исходной смеси $Na_2MoO_4 + Na_2WO_4 + 2$ SrCl₂ опишем применение метода ионного баланса. Вначале рассмотрим следующее равновесие (13):

$$Na_2MoO_4 + Na_2WO_4 + 2 SrCl_2 \rightleftharpoons x SrMoO_4 + y SrWO_4 + z NaCl$$
 (13)

где x, y, z –коэффициенты, которые необходимо определить.

Приравниваем коэффициенты при ионах в левой и правой частях (14):

$$\begin{cases}
4Na^{+} = z \\
WO_{4}^{2-} = y \\
MoO_{4}^{2-} = x \\
2Sr^{2+} = x = y \\
4Cl^{-} = z
\end{cases}$$
(14)

Из этой системы линейных уравнений получаем x=1; y=1 и z=4. Так как коэффициенты больше нуля, то реализуется уравнение (15):

$$Na_2MoO_4 + Na_2WO_4 + 2 SrCl_2 \rightleftharpoons SrMoO_4 + SrWO_4 + 4 NaCl$$
 (15)

Приведенная брутто реакция распадается на две более простых реакции (16, 17):

$$Na_2MoO_4 + SrCl_2 \rightleftharpoons SrMoO_4 + 2NaCl$$
 (16)

$$Na_2WO_4 + SrCl_2 \rightleftharpoons SrWO_4 + 2NaCl$$
 (17)

В правой части брутто-реакции приведены соли, входящие в стабильный треугольник SrMoO₄-SrWO₄-NaCl. Кристаллизующимися из расплава фазами будут NaCl и твердые растворы $SrMo_{0,5}W_{0,5}O_4$, так как соотношение $MoO_4^{2-}/WO_4^{2-}=1:1$.

В третьей главе приводятся результаты экспериментального исследования фазовых равновесий в системах методами ДТА и РФА. Кривые нагревания и охлаждения составов снимали на установке ДТА в стандартном исполнении, а также на установке синхронного термического анализа STA 449 F3 Phoenix, фирмы NETZSCH, предназначенной для работы в интервале температур от комнатной до 1500°С в атмосфере аргона или гелия. Для исследования при низких температурах использована установка НДТА. Рентгенофазовый анализ проводят на дифрактометрах ДРОН-2.0 и ДРОН-3.0.

Взаимодействие во взаимных системах Na^+ , Sr^{2+} // Cl^- , MoO_4^{2-} (WO_4^{2-}), Na^+ , Sr^{2+} // Cl^- , MoO_4^{2-} , WO_4^{2-} . Исследовано взаимодействие в порошкообразных гомогенизированных смесях 0,5 экв. долей $Na_2MoO_4 + 0,5$ экв. долей $SrCl_2$ (состав 1-2,0592 г $Na_2MoO_4 + 1,5853$ г $SrCl_2$), 0,5 экв. долей $Na_2WO_4 + 0,5$ экв. долей $SrCl_2$ (состав 2-2,9383 г $Na_2WO_4 + 1,5853$ г $SrCl_2$), 0,25 экв. долей $Na_2MoO_4 + 0,5$ экв. долей $SrCl_2$ (Состав 3-1,0296 г $Na_2MoO_4 + 1,4641$ г $Na_2WO_4 + 1,5853$ г $SrCl_2$). Гомогенизацию исходных безводных веществ проводили в агатовой ступке в ацетоне. Для проведения исследований при нагреве отбирали смеси массой 100 мг. Скорость нагрева образцов на установке фирмы «Netzsh» была 10 К/мин. Использованы реактивы квалификации «хч» и «чда».

На кривой ДТА нагрева состава 1 (рис. 13) отмечены следующие термоэффекты: а) эндоэффект при 457,2°C, отвечающий α/β полиморфному переходу Na₂MoO₄; б) экзоэффект, с началом при 541,5°C и завершающийся при 555,4°C – соответствует экзотермической реакции обмена; в) эндоэффект при 775,3°C отвечает температуре перевальной точки. До полного расплавления смеси не нагревали ввиду высокой температуры плавления. После получения информации о температуре плавления, соответствующей перевальной точке е 784°C, проводили охлаждение смесей. На кривой охлаждения смеси 1 (рис. 13) отмечено два экзоэффекта: при 781,1°C (отвечает температуре перевальной эвтектике (отвечает тройной при 623°C NaCl-SrMoO₄-Na₃ClMoO₄). Оставшуюся смесь 1, из которой отбирали часть для снятия ДТА, поместили в печь шахтного типа с температурой 700°C, выдержали в течение 10 минут. Затем в печи снизили температуру до 600°C, выдержали в течение одного часа и закалили во льду. Рентгенограмма закаленной смеси, приведенная на рис. 14 показала наличие следующих фаз: NaCl, SrMoO₄ и Na₃ClMoO₄.

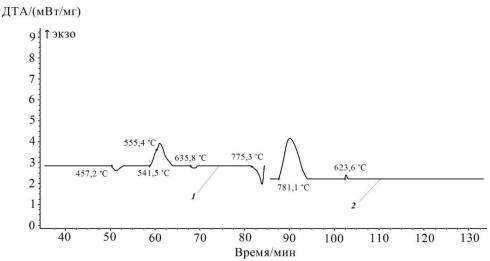


Рисунок 13 — Кривые ДТА нагревания и охлаждения реакционной смеси SrCl₂ + Na₂MoO₄: *I* — дифференциальная кривая нагревания, 2 — дифференциальная кривая охлаждения

Исследование составов смесей, отвечающих линиям конверсии. Методом ДТА исследованы смеси, отвечающие линии конверсии FC и CD. Т-х-диаграмма линии конверсии FC построена по совокупности пяти составов (рис. 15). Ликвидус, вследствие высоких температур плавления, указан приближенно пунктиром, а смеси исследовали \sim до 850° С. Первичной кристаллизации отвечает фаза SrMo_xW_{1-x}O₄, вторичной кристаллизации отвечает кристаллизация SrMo_xW_{1-x}O₄ + NaCl. Третичной кристаллизации отвечает совокупность фаз SrMo_xW_{1-x}O₄ + NaCl + f (f – Na₃ClMo_xW_{1-x}O₄).

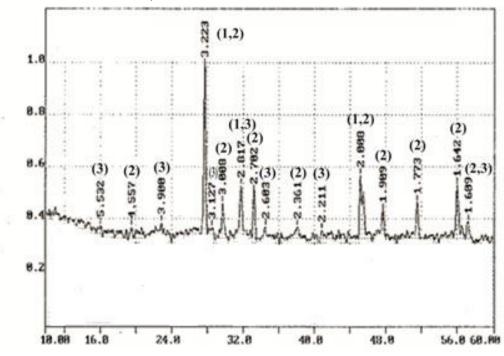


Рисунок 14 — Рентгенограмма порошка после реакции смеси $SrCl_2 + Na_2MoO_4$ (фазы: 1 — NaCl; 2 — $SrMoO_4$; 3 — Na_3ClMoO_4)

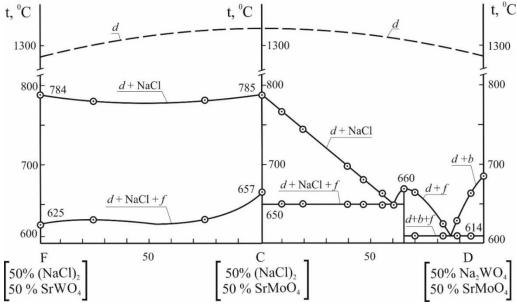


Рисунок 15 – *Т-х*-диаграмма линий конверсии CF и CD

Линия конверсии CD (рис. 15) построена по данным о температурах фазовых переходов 14 составов. На этой линии также отсутствуют термоэффекты, отвечающие кристаллизации четырех фаз. Рентгенофазовый анализ сплава 50%F + 50%C (0,5 $SrCl_2 + 0$,25 $Na_2WO_4 + 0.25$ Na_2MoO_4) доказывает существование трех фаз в продуктах кристаллизации.

Система NH_4NO_3 - $CO(NH_2)_2$ - H_2O . Данные по элементам огранения нанесены на треугольник состава (рис. 16). Данные по координатам тройной эвтектики позволили провести планирование эксперимента. Экспериментально изучен политермический разрез AB [A (70% мас. $H_2O + 30\%$ мас. $CO(NH_2)_2$); В (70% мас. $H_2O + 30\%$ мас. NH_4NO_3)]. Определен методом НДТА состав эвтектики: 30,5 мас.% $CO(NH_2)_2 + 13$ мас.% $NH_4NO_3 + 56,5$ мас. % H_2O с температурой плавления смеси – 23,5 °C.

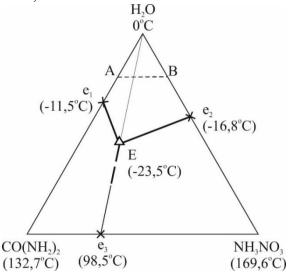


Рисунок 16 — Треугольник составов трехкомпонентной системы H_2O - $CO(NH_2)_2$ - NH_4NO_3 и расположение политермического разреза AB

Система NaCl-CaCl₂- H_2O . Данные по двойным системам нанесены на треугольник составов (рис. 17). Тройная эвтектика расположена в симплексе H_2O -CaCl₂· $6H_2O$ -NaCl· $2H_2O$. Изучено политермическое сечение FG [F (85)

масс.% $H_2O + 15$ масс.% $CaCl_2$); G (85 масс.% $H_2O + 15$ масс.% NaCl). Определено соотношение хлорида кальция и хлорида натрия из диаграммы состояния политермического разреза FG в тройной эвтектической точке $(\bar{E}).(\bar{E})$. Определена температура плавления и состав тройной эвтектики $\sim -65\pm0.5$ °C.

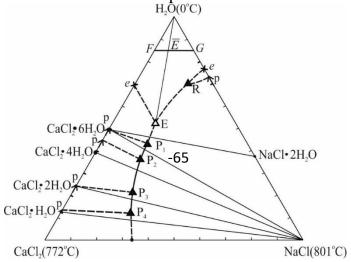


Рисунок 17 – Модель ликвисуса трехкомпонентной системы NaCl-CaCl₂-H₂O

Система $NaNO_2$ - CH_3COONa - H_2O . Для экспериментального исследования выбран политермический разрез CD [C (80% мас. $H_2O + 20$ % мас. $NaNO_2$); D (80% мас. $H_2O + 20$ % мас. CH_3COONa)]/ Получены кривые нагревания (охлаждения) для 6 составов. определено отношение нитрита натрия $NaNO_2$ и ацетата натрия CH_3COONa из T-х-диаграммы политермического разреза CD в эвтектической точке (E), а также, температура плавления тройной эвтектики (- 40.5 ± 0.5 °C). Изучением политермического разреза $H_2O \rightarrow E$ выявлен эвтектический состав: 64.0 масс.% $H_2O + 23.0$ масс.% $NaNO_2 + 13.0$ масс.% CH_3COONa .

В четвертой главе приведено обсуждение результатов моделирования систем LiCl-L₂MoO₄-Li₂WO₄, NaCl-NaMoO₄-Na₂WO₄ и Na⁺,Sr²⁺||MoO₄²⁻,WO₄²⁻. Показано удовлетворительное согласование экспериментальных данных с данными моделирования ликвидусов (на примере NaCl-NaMoO₄-Na₂WO₄ и Na⁺, Sr²⁺ || MoO₄²⁻, WO₄²⁻, puc. 18, 19).

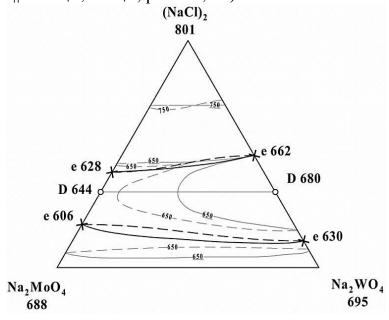


Рисунок 18 — Треугольник составов системы Na⁺||Cl⁻,WO₄²⁻,MoO₄²⁻ с нанесенными линиями — изотермами ликвидуса системы (тонкие линии) и моновариантными линиями (толстые линии). Штриховыми линиями представлены данные, полученными из 3D модели, сплошными — экспериментально

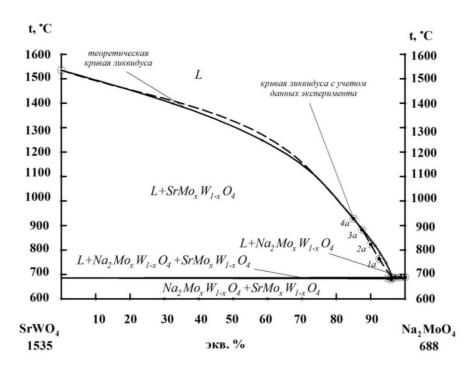


Рисунок 19 — Политермический разрез нестабильной диагонали $SrWO_4$ — Na_2MoO_4 системы $Na^+,Sr^{2+}\|WO_4^{2-},MoO_4^{2-}$ и изображенные на нем экспериментальные точки (температура в $^{\circ}C$)

Фазовые реакции в изученной четырёхкомпонентной взаимной системе Na^+ , $Sr^{2+}||Cl^-$, MoO_4^{2-} , WO_4^{2-} (рис. 20) приведены в таблице 4.



Рисунок 20 — Эскиз объёмов кристаллизации четырёхкомпонентной взаимной системы Na^+ , $Sr^{2+}\|Cl^-$, MoO_4^{2-} , WO_4^{2-}

Вследствие высоких температур плавления, доминирующие поля кристаллизации имеет $Sr ext{ЭO}_4$ ($ext{Э}-Mo,W$). В тройной взаимной системе $Na^+, Sr^{2+} || MoO_4^{2-}, WO_4^{2-}$ доминируют твёрдые растворы $Sr Mo_x W_{1-x} O_4$. В призме составов также преобладает объём кристаллизации твёрдых растворов $Sr Mo_x W_{1-x} O_4$ (рис. 20).

Таблица 4 – Фазовые равновесия для элементов призмы составов системы Na^+ , $Sr^{2+}||Cl^-$, MoO_4^{2-} , WO_4^{2-} .

No	Элемент диаграммы	Фазовое равновесие	Равновес-
		1	ное
			состояние
1	$SrCl_2 - e_1-E_3-E_4-e_3-e_2$	L⇄ SrCl ₂	
2	SrMoO ₄ - SrWO ₄ - e ₃ -E ₄ -e ₂ -	L ⇒ SrMo _x W _{1-x} O ₄	
	E_5 - E_6 - e_{10} - e_{11} - E_1 - E_2 - e_5 - E_3 - e_2	$L \leftarrow SIIVIO_X W 1-xO4$	трёхвари- антное
3	e_1 -NaCl- e_6 - E_5 - E_2 - e_5 - E_3 - E_4	L ⇄ NaCl	
4	$Na_2MoO_4-e_{11}-E_1-E_6-e_{7}-$	I →No Sr Mo W. O.	
	Na ₂ WO ₄ - e ₁₀	L ≥ Na _{2-2y} Sr _y Mo _x W _{1-x} O ₄	
5	e_7 - E_6 - e_9 - E_1 - E_2 - e_8 - e_6 - E_3	L Na ₃ ClMo _x W _{1-x} O ₄	
6	e ₂ - e ₃ -E ₄ -E ₃ - e ₂	$L \rightleftarrows SrMo_xW_{1-x}O_4 + SrCl_2$	
7	e ₁ -E ₃ -E ₄ - e ₁	L	
8	E_3 - E_4 - e_4 - E_5 - E_2 - e_5 - E_3	L	
9	E ₅ -E ₆ -E ₁ -E ₂ - E ₅	$L \rightleftarrows SrMo_xW_{1-x}O_4 + Na_3ClMo_xW_{1-x}O_4$	дивариант-
10	e ₆ -E ₅ -E ₂ -e ₈ -e ₆	$-E_5-E_2-e_8-e_6$ $L \rightleftharpoons NaCl+Na_3ClMo_xW_{1-x}O_4$	
11	. E E	L Na ₃ ClMo _x W _{1-x} O ₄ +	ное
	$e_7-E_6-E_1-e_9-e_7$	$+ Na_{2-2y}Sr_yMo_xW_{1-x}O_4$	
12	E E -	L SrMo _x W _{1-x} O ₄₊	
	e_{10} - e_{11} - E_1 - E_6 - e_{10}	$Na_{2-2y}Sr_yMo_xW_{1-x}O_4$	
13	E- E-	L	
	E_3 - E_4	$SrMo_xW_{1-x}O_4$	
14	E ₂ -E ₅	$L \rightleftarrows NaCl + SrMo_xW_{1-x}O_4 + Na_3ClMo_xW_{1-x}O_4$	дивариант-
15	EE	L SrMo _x W _{1-x} O ₄₊	ное
	E_1 - E_6	$Na_{2-2y}Sr_yMo_xW_{1-x}O_4 + Na_3ClMo_xW_{1-x}O_4$	

ЗАКЛЮЧЕНИЕ.

Автором проведено геометрическое и компьютерное моделирование некоторых трех- и четырехкомпонентных взаимных и невзаимных солевых и водно-солевых конденсированных систем. При выполнении работы получены следующие основные результаты:

- 1. Проведено моделирование фазовых диаграмм в неизученных рядах систем с участием галогенидов, молибдатов и вольфраматов щелочных и щелочно-земельных металлов:
- в системах $Li_1M^{2+}||MoO_4^{2-},WO_4^{2-}(M-Ca,Sr)$ кристаллизующиеся в двух полях фазы $Li_2Mo_xW_{1-x}O_4$ и $MMo_xW_{1-x}O_4$;
- в системах $Li^+||F^-,Cl^-(J^-), MoO_4^{2-}, WO_4^{2-}$ прогнозируется три объема кристаллизации фаз LiF,LiCl,(LiJ) и $Li_2Mo_xW_{1-x}O_4$;
- в системах $Na^+(K^+)||F^-,Br^-(J^-),MoO_4^{2-},WO_4^{2-}$ объемы кристаллизации принадлежат фаз $Na^+(K^+)F^-,Na^+(K^+)$ $Br^-(J^-),Na_3FMo_xW_{1-x}O_4$ ($K_3FMo_xW_{1-x}O_4$) и $Na_2^+(K_2^+)Mo_xW_{1-x}O_4$;

- в системах $Li^+, K^+ || Cl^-(J^-), MoO_4^{2-}, WO_4^{2-}$ призмы составов представлены фазами $LiCl(LiJ), KCl(KJ), Li_2 Mo_x W_{1-x}O_4, LiKMo_x W_{1-x}O_4, K_2 Mo_x W_{1-x}O_4;$
- в системах $Li^+,M^{2+}||Hal^-,MoO_4^{2-},WO_4^{2-}$ объемы кристаллизующихся относятся к фазам $LiCl(LiJ),MCl_2(MJ_2),Li_2Mo_xW_{1-x}O_4$ и $MMo_xW_{1-x}O_4$;практически аналогичные объемы кристаллизации в системах $Na^+,M^{2+}||Hal^-,MoO_4^{2-},WO_4^{2-}(M^{2-})$
- -Sr²⁺,Ba²⁺ Hal—Br-J-);
- в системах K^+ , $Ca^{2+}||$ $Br^-(J^-)$, $MoO_4{}^{2-}$, $WO_4{}^{2-}$ призмы составов включают объемы кристаллизирующихся фаз KBr(KJ), $CaBr_2(CaJ_2)$, $KCaCl_2$, $K_2Mo_xW_{1-x}O_4$, $Ca-Mo_xW_{1-x}O_4$.

Полученные данные по прогнозу фазовых диаграмм могут быть использованы для планирования экспериментальных исследований.

2. В графической системе КОМПАС-3D осуществлено компьютерное моделирование ликвидусов систем: без двойных соединений (Li⁻Cl-Li₂MoO₄-Li₂WO₄ (поля кристаллизирующихся фаз LiCl и Li₂Mo_xW_{1-x}O₄), с двойными соединениями NaCl-Na₂MoO₄-Na₂WO₄), с двойными соединеняиями (поля кристаллизирующихся фаз Na₂Mo_xW_{1-x}O₄, Na₃ClMo_xW_{1-x}O₄); Na⁺,Sr²⁺||MoO₄²⁻,WO₄²⁻ (два поля кристаллизирующихся фаз – Na_{2z2v}Sr_vMo_xW_{1-x}O₄ и

$SrMo_xW_{1-x}O_4$).

- 3. Компьютерные модели позволили построить политермические и изотермические разрезы систем, диаграммы материального баланса фаз в зависимости от температуры. Сравнение расчётных и экспериментальных данных показало удовлетворительную сходимость данных расчета и эксперимента. Модальное значение относительной ошибки $(\delta, \%)$ между экспериментальными и теоретическими значениями находится в диапазоне 0...5%, для большинства (85%) сплавов.
- 4. Проведено разбиение на симплексы четырехкомпонентной взаимной системы $Na^+,Sr^{2+}||Cl^-,MoO_4^{2-},WO_4^{2-}$, построено древо фаз, имеющие линейное строение и включающее стабильный тетраэдр, пентатоп, гексатоп, разделенные между собой стабильными треугольным и квадратным сечениями. Методами ионного баланса и конверсионным описано химическое взаимодействие. Прогнозирование древ фаз систем $Na^+,M^{2+}||Hal^-,MoO_4^{2-},WO_4^{2-}$ ($M^{2+}-Ca^{2+},Sr^{2+},Ba^{2+};Hal-Br^-,J^-$) показало, что они состоят из тетраэдра $NaHal-Me(Hal)_2-MMoO_4-MWO_4$ и пентатопа $NaHal-Na_2MoO_4-Na_2WO_4-MWO_4$, соединяющихся стабильным секущим треугольником $NaHal-MMoO_4-MWO_4$.
- 5. Исследовано взаимодействие в порошкообразных смесях эквивалентных количеств веществ для точек конверсий С, F и для центральной точки линии конверсии С-F, которое подтверждено данными ДТА и РФА. Из кривых нагревания и охлаждения сплавов определены температуры начала экзотермических реакций обмена в системах $Na^+,Sr^{2+}||Cl^-,MoO_4^{2-}; Na^+,Sr^{2+}||Cl^-,MoO_4^{2-}; Na^+,Sr^{2+}||Cl^-,MoO_4^{2-},Ceeдeния о температурах плавления самых низкоплавких тройных эвтектик, о температурах перевальных точек на стабильных диагоналях <math>NaCl-Sr ext{ЭO}_4$, а также температурах ликвидуса.
- 6. Экспериментально исследована система $Na^+,Sr^{2+}||Cl^-,MoO_4^{2-},WO_4^{2-}$. Выявлены низкоплавкие смеси, которые могут быть использованы для электрохимического получения вольфрама. Расплавы на основе систем

 $Na^+,Sr^{2+}||MoO_4^{2-},WO_4^{2-}$ и $Na^+,Sr^{2+}||Cl^-,MoO_4^{2-},WO_4^{2-}$ могут быть использованы для получения сплавов Mo-W или для выращивания монокристаллов $SrMo_xW_{1-x}O_4$ Низкоплавкие составы эвтектик $CO(NH_2)_2 - NH_4NO_3-H_2O$, $NaCl-CaCl_2-H_2O$ могут быть использованы в качестве жидких антигололёдных реагентов, эвтектика системы $NaCl-CaCl_2-H_2O$ может быть использована в качестве низкотемпературного теплоносителя. Полученные экспериментальные данные могут быть использованы для пополнения баз данных по фазовым равновесиям.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ ИЗЛОЖЕНО В СЛЕДУЮЩИХ РАБОТАХ:

Статьи в журналах, рекомендованных ВАК

- 1. Милов С.Н. Компьютерная модель фазового комплекса системы LiCl-Li₂MoO₄-Li₂WO₄ / A.В. Бурчаков, И.К. Гаркушин, С.Н. Милов // Изв. Саратов. ун-та. Новая серия. Химия. Биология. Экология, 2018. T.18. T.19. -
- 2. Милов С.Н. Образование непрерывных рядов твердых растворов в солевых системах / И.К. Гаркушин, М.В. Чугунова, А.В. Бурчаков, С.Н. Милов // Изв. Саратов. ун-та. Новая серия. Химия. Биология. Экология, 2018. Т. 18. Вып. 3. -С. 268-277.
- 3. Милов С.Н. Модель фазового комплекса трехкомпонентной взаимной системы $Na^+,Sr^{2+}||WO_4^{2-},MoO_4^{2-}|$ А.В. Бурчаков, И.К. Гаркушин, С.Н. Милов, И.П. Калинина // Бутлеровские сообщения. 2019. Т. 59. №8. С. 103-115
- 4. Милов С.Н. Прогнозирование фазовых равновесий в системе NaCl-Na₂MoO₄-Na₂WO₄ на границе «жидкость-твердое тело» / А.В. Бурчаков, И.К. Гаркушин, С.Н. Милов, М.А. Сухаренко // Бутлеровские сообщения. 2019. Т. 60. № 10. С. 124-139
- 5. Милов С.Н. Исследование взаимодействия в четырёхкомпонентной взаимной системе из хлоридов, молибдатов и вольфраматов натрия и стронция / И.К. Гаркушин, С.Н. Милов, А.С. Трунин // Журн. неорг. химии, 1991. Т.36. Вып.4. С.1044-1049
- 6. Милов С.Н. Исследование трехкомпонентной системы $CaCl_2 NaCl H_2O / A.Ю$. Копнина, С.Н. Милов, И.К. Гаркушин // Изв. СНЦ РАН. Спец. выпуск «Химия и хим. технология». Самара, 2004. С.18-20.
- 7. Милов С.Н. Тройная водная система на основе мочевины и аммиачной селитры и использование данной смеси в качестве антигололедного состава / А.Ю. Копнина, С.Н. Милов, И.К. Гаркушин, И.М. Кондратюк // Журн. неорг. химии. 2004. Т.49. Вып. 12. С. 2101-2102.

Статьи в сборниках, тезисы докладов

- 1. Милов С.Н. Исследование и анализ систем ряда Na, М|F, I (где M-Ca, Sr, Ba): В кн.: Актуальные проблемы современной химии / Тез. докл. / С.Н. Милов, И.К. Гаркушин, Н.Н. Вердиев. Куйбышев, 1988. С.51-52
- 2. Милов С.Н. Тройные взаимные системы Li, Ca \parallel F, ЭO₄: В кн.: Актуальные проблемы современной химии / Тез. докл. / С.Н. Милов, И.Е. Колосов, И.К. Гаркушин. Куйбышев, 1988. С.61.
- 3. Милов С.Н. Ограняющие элементы четырёхкомпонентной взаимной системы Na, Sr]]Cl, MoO₄, WO₄: В кн.: Актуальные проблемы современной химии. Тез. докл. / С.Н. Милов, И.К. Гаркушин. Куйбышев, 1989. С.86
- 4. Милов С.Н. Физико химическое взаимодействие в системах Na, M]]Cl, MoO₄, WO₄ (M-Ca, Sr, Ba): В кн.: VIII Всесоюзн. совещ. по физико-химическому анализу. Тез. докл. / И.К. Гаркушин, С.Н. Милов, А.С. Космынин. Саратов, 1991. С.142
- 5. Милов С.Н. Исследование двухкомпонентных систем $CO(NH_2)_2$ - NH_4NO_3 , NH_4NO_3 - $NaNO_2$, $CO(NH_2)_2$ - $NaNO_2$ как основы для антиобледенительных смесей: В кн.: Окружающая среда для нас и будущих поколений. Тр. VII Междунар. конф. / Т.В. Лекомцева, И.К. Гаркушин,

- Е.Г. Данилушкина, А.Ю. Копнина, И.М. Кондратюк, С.Н. Милов. Самара: СамГТУ, 2002. С. 36-37.
- 6. Милов С.Н. Исследование трехкомпонентных водных систем, используемых в качестве антиобледенительных смесей: Тр. VIII Межд. конф. «Окружающая среда для нас и будущих поколений» / А.Ю. Копнина, И.К. Гаркушин, И.М. Кондратюк, Н.К. Назаров, С.Н. Милов. Самара, 2003. С. 70-71.
- 7. Милов С.Н. Проблемы использования антигололедных покрытий на автодорогах: В кн.: Тр. междунар. научн.-практической конф. «Безопасность и логистика транспортных систем». Ч. ІІ. / А.Ю. Копнина, С.Н. Милов, И.К. Гаркушин, И.М. Кондратюк, Т.А. Нотина. Самара, 2004. С.124-125.
- 8. Милов С.Н. Исследование трех и четырехкомпонентных водных систем с целью использования их в качестве антигололедных покрытий на дорогах: В кн.: Тр. ІХ Межд. конф. «Окружающая среда для нас и будущих поколений» / А.Ю. Копнина, С.Н. Милов, И.М. Кондратюк, И.К. Гаркушин.— Самара, 2004. С.49-50.
- 9. Милов С.Н. Описание химического взаимодействия в четырехкомпонентной взаимной системе Na^+ , $Sr^{2+} \parallel Cl$ -, MoO_4^{2-} , WO_4^{2-} конверсионным методом и методом ионного баланса.: XII Межд. научно-практ. конф.,/И.К. Гаркушин А.В. Бурчаков С.Н. Милов Н.Н. Вердиев г. Сочи, 2020, С.589-595

Монография

Милов С.Н. Образование непрерывных рядов твердых растворов в тройных и многокомпонентных солевых системах / И.К. Гаркушин, М.В. Чугунова, С.Н. Милов. - Екатеринбург: УрО РАН, 2011. - 140 с. - ISBN 978-5-7691-2211-8.

Выражаю благодарность научному руководителю, д.х.н., профессору Гаркушину Ивану Кирилловичу, доцентам Бурчакову А.В. и Сухаренко М.А., а также сотрудникам кафедры общей и неорганической химии СамГТУ за помощь в работе над диссертацией.

Автореферат отпечатан с разрешения диссертационного совета Д 212.263.02 при ФГБОУ ВО «Тверской государственный университет»

(протокол № ___ от ___ 2020 г.) Заказ №. ___ Тираж 100 экз. Форм. лист. 60×84 1/16. Отпечатано на ризографе.

ФГБОУ ВО «Тверской государственный университет» Редакционно-издательское управление 170100 г. Тверь, Студенческий пер., д. 12